位置:成果数据库 > 期刊 > 期刊详情页
基于网络审计日志关联规则挖掘的改进
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410083
  • 相关基金:国家自然科学基金项目(60773013)
中文摘要:

由于网络入侵检测系统的实时性要求,将传统的关联规则挖掘算法直接应用到入侵检测系统中,运行效率往往不能满足实际的需要。考虑到网络审计日志实时更新的特点,提出了一种基于深度优先生成树的关联规则挖掘的改进算法FIDF,它改变了候选项集的产生顺序,优先寻找最大频繁项集。该算法只需扫描一次数据库,且当事务数据库和支持度阈值改变时,无需重新扫描数据库,提高了审计日志数据关联规则挖掘的效率,确保了入侵检测系统的实时性和准确性。

英文摘要:

Because of real-time requirement of the network intrusion detection system,applying the traditional association rule mining algorithm to the intrusion detection system will not meet the actual needs.Considering real-time update feature of the network audit records,the algorithm FIDF based on depth-first spanning tree is put forward.The algorithm changes the order of candidate itemsets generation,first to find maximal frequent itemsets.It only scans the database once,and when the transaction database and the support threshold are changed,it is no need to rescan the database,which improves the efficiency of audit record association rules mining and ensures the real-time and accuracy demand of intrusion detection system.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263