针对星载红外成像系统在轨定标等特殊环境条件的应用要求,研制了一种基于现场可编程门阵列(Field-Programmable Gate Array,FPGA)的红外焦平面阵列(Infrared Focal Plane Array,IRFPA)非均匀性在线定标与实时校正芯片系统。由于对输入信号进行了标准化设计,该系统可用于各类红外成像系统的IRFPA非均匀性在线定标与实时校正处理。这种系统在时钟信号的驱动下以流水线方式运行,在对非均匀红外图像进行实时校正的同时,能够在线获取定标图像并能对存储器中的校正系数进行在线更新。该系统具有体积小、运算速度快、稳定可靠以及易于升级等优点,为星载红外成像系统IRFPA非均匀性的在轨定标开辟了一条有效的技术途径。
According to the in-orbit calibration requirement of a spaceborne infrared imaging system,an online nonuniformity calibration and real-time correction chip system is developed for Infrared Focal Plane Arrays(IRFPA).The system is based on a Field-Programmable Gate Array(FPGA).Because the design of its input signal is standardized,it can be used for on-line nonuniformity calibration and real-time correction of IRFPAs for various infrared imaging systems.Driven by a clock signal,the system operates in a pipeline way.It can acquire calibration images and update the correction coefficient in memory on line while correcting the nonuniform images in real time.It has the advantages of small volume,fast operation,stability,reliability and easy updating.This work has opened up an effective way for the in-orbit nonuniformity calibration of IRFPAs used in spaceborne infrared imaging systems.