在这份报纸,我们概括二种分级的代数学, -Koszul 代数学和 K p 代数学,到非分级的盒子。-Koszul 代数学的小模块有纯决定,当那些 K p 代数学承认非纯的决定时。我们也为 notherian semiperfect 代数学提供必要、足够的条件是伪 -- Koszul 代数学或是 quasi-K p 代数学。
In this paper, we generalize two kinds of graded algebras, δ-Koszul algebras and Kp algebras, to the non-graded cases. The trivial modules of δ-Koszul algebras have pure resolutions, while those of Kp algebras admit non-pure resolutions. We provide necessary and sufficient conditions for a notherian semiperfect algebra either to be a quasi-δ-Koszul algebra or to be a quasi-Kp algebra.