位置:成果数据库 > 期刊 > 期刊详情页
一种基于主题的文本聚类方法
  • ISSN号:1003-0077
  • 期刊名称:中文信息学报
  • 时间:0
  • 页码:58-62
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学信息检索实验室,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60575042,60503072,60675034);腾讯基金资助项目
  • 相关项目:中文短语及简单句的复述技术研究
中文摘要:

现有的文本聚类方法难以正确识别和描述文本的主题,从而难以实现按照主题对文本进行聚类。本文提出了一种新的基于主题的文本聚类方法:LFIC。该方法能够准确识别文本主题并根据文本的主题对其进行聚类。本方法定义和抽取了“主题元素”,并利用其进行基本类索引。同时还整合利用了语言学特征。实验表明,LFIC的聚类准确率达到94.66%,优于几种传统聚类方法。

英文摘要:

Few of the existing document clustering methods can detect or describe document topics properly, which makes it difficult to conduct clustering based on topics. In this paper, we introduce a novel topical document clustering method called Linguistic Features Indexing Clustering (LFIC), which can identify topics accurately and cluster documents according to these topics. In LFIC, "topic elements" are defined and extracted for indexing base clusters, Additionally, linguistic features are exploited. Experimental results show that LFIC can gain a higher precision (94. 66 %) than some widely used traditional clustering methods.

同期刊论文项目
期刊论文 38 会议论文 15
期刊论文 29 会议论文 12
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136