位置:成果数据库 > 期刊 > 期刊详情页
Adaptive Neighboring Selection Algorithm Based on Curvature Prediction in Manifold Learning
  • ISSN号:1005-9113
  • 期刊名称:Journal of Harbin Institute of Technology
  • 时间:2013
  • 页码:119-123
  • 分类:TP393.17[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China, [2]School of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang , China
  • 相关基金:Sponsored by the National Natural Science Foundation of China(Grant No.61101122 and 61071105)
  • 相关项目:基于绿色AP的WLAN室内定位算法研究
中文摘要:

With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,it proposes a novel fingerprint positioning algorithm known as semi-supervised affinity propagation clustering based on distance function constraints. We show that by employing affinity propagation techniques,it is able to use a fractional labeled data to adjust similarity matrix of signal space to cluster reference points with high accuracy. The semi-supervised APC uses a combination of machine learning,clustering analysis and fingerprinting algorithm. By collecting data and testing our algorithm in a realistic indoor WLAN environment,the experimental results indicate that the proposed algorithm can improve positioning accuracy while reduce the online localization computation,as compared with the widely used K nearest neighbor and maximum likelihood estimation algorithms.

英文摘要:

With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,it proposes a novel fingerprint positioning algorithm known as semi-supervised affinity propagation clustering based on distance function constraints. We show that by employing affinity propagation techniques,it is able to use a fractional labeled data to adjust similarity matrix of signal space to cluster reference points with high accuracy. The semi-supervised APC uses a combination of machine learning,clustering analysis and fingerprinting algorithm. By collecting data and testing our algorithm in a realistic indoor WLAN environment,the experimental results indicate that the proposed algorithm can improve positioning accuracy while reduce the online localization computation,as compared with the widely used K nearest neighbor and maximum likelihood estimation algorithms.

同期刊论文项目
期刊论文 26 会议论文 7
期刊论文 13 会议论文 16 专利 11
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报:英文版》
  • 主管单位:工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:
  • 地址:哈尔滨市西大直街92号136信箱
  • 邮编:150001
  • 邮箱:hitxuebao_e@HIT.edu.cn
  • 电话:0451-86414135
  • 国际标准刊号:ISSN:1005-9113
  • 国内统一刊号:ISSN:23-1378/T
  • 邮发代号:14-263
  • 获奖情况:
  • 2000年获黑龙江省科技期刊一等奖,2012年获科技类“2012中国国际影响力优秀学术期刊...
  • 国内外数据库收录:
  • 美国化学文摘(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库
  • 被引量:160