为解决宁夏设施土壤连作障碍、碱化度高等问题,以连作黄瓜10 a的土壤为研究对象,探讨施用鸡粪(CK)、鸡粪+有机酸性改良剂(T1)、含氮量与鸡粪相等的柠条堆肥(T2)、含氮量相当于鸡粪75%的柠条堆肥(T3)、含氮量相当于鸡粪50%的柠条堆肥(T4)、含氮量与鸡粪相等的柠条堆肥+有机酸性改良剂(T5)、含氮量相当于鸡粪75%的柠条堆肥+有机酸性改良剂(T6)、含氮量相当于鸡粪50%的柠条堆肥+有机酸性改良剂(T7)对连作土壤理化性质、酶活性及微生物数量的影响。结果表明,总体上添加有机酸性改良剂可降低土壤pH值,提高土壤EC及全氮、速效氮、速效钾含量,增强土壤酶活性,增加土壤微生物数量。缓苗期,T1、T5、T6处理土壤pH值较CK显著下降;T1、T7处理土壤EC较CK显著提高;T6处理土壤全氮含量最高,较CK显著增加106.61%,T5处理次之;T6处理土壤速效氮含量最高,较CK显著提高42.78%,T7处理次之;T7处理土壤速效钾含量最高,较CK显著增加103.54%,T1、T6处理次之;T6处理土壤脲酶活性较CK显著增加;T6、T7处理土壤蔗糖酶、磷酸酶活性均较高,均显著高于CK;T7和T1处理土壤过氧化氢酶活性显著高于CK;T5处理土壤细菌数量最多,T7处理次之,均显著高于CK;T7处理放线菌数量最高,T2、T6处理次之,均显著高于CK;T1处理土壤真菌数量最多,T7、T6处理次之,均显著高于CK。盛果期,T6处理土壤pH值最低,T7处理次之,均显著低于CK;T6处理土壤EC最高,T1、T7处理次之,均显著高于CK;T7处理土壤全氮、速效氮含量均最高,T6处理较高,均显著高于CK;T6处理土壤速效钾含量最高,T7处理次之,均显著高于CK;T1和T7处理土壤脲酶活性最高,T6处理次之,均显著高于CK;T7处理土壤蔗糖酶活性较高,T6和T7处理土壤磷酸酶活性最高,均显著高于CK;T6处理土壤放线菌数量最高,T7处理次之,均显著高于其他处理;T6处理土壤
In order to solve the problem of continuous cropping obstacle and high degree of alkalization of protected soil in Ningxia,the soil of continuous cropping cucumber for 10 a was taken as the study object,the effects of the application of chicken manure( CK),chicken manure + organic acid modifier( T1),Caragana compost containing nitrogen equivalent to chicken manure compost( T2),Caragana compost containing nitrogen equivalent to 75% of chicken manure( T3),Caragana compost containing nitrogen equivalent to 50% of chicken manure( T4),Caragana compost containing nitrogen equivalent to chicken manure compost + organic acid modifier( T5),Caragana compost containing nitrogen equivalent to 75%chicken manure compost + organic acid modifier( T6),Caragana compost containing nitrogen equivalent to 50% chicken manure compost + organic acid modifier( T7) on the soil physicochemical property,enzyme activity and microbial quantity. The results showed that on the whole,the application of organic acid modifier could reduce soil pH value,and increase soil EC and total N,available N and available K contents,enzyme activities and microbial quantity. At transplant recovering stage,the soil pH value of T1,T5 and T6 treatments decreased significantly compared with CK;the soil EC of T1 and T7 treatments were significantly higher than that of CK;T6 treatment had the highest soil total N content,which increased by106. 61% compared with CK,followed by T5 treatment;T6 treatment had the highest content of available N,which increased by 42. 78% compared with CK,followed by T7 treatment;T7 treatment had the highest content of available K in soil,and increased by 103. 54% compared with CK,followed by T1 and T6treatments;the soil urease activity of T6 treatment was significantly higher than that of CK;the activities of sucrase and phosphatase of T6 and T7 treatments were higher than those of CK;the catalase activity of T7 and T1 treatments were significantly higher than that of CK;T5 treatment had the highes