在分类问题中,支持向量机(SVM)首先将样本映入某一高维特征空间,并在此空间中构造具有最大间隔的分类超平面.由Vapnik的统计学习理论知道,SVM泛化能力的强弱与分类超平面间隔的大小有十分密切的关系:分类平面的间隔越大,SVM的泛化能力就越强.本文提出了一种通过特征权学习来增加分类超平面的间隔,从而增强SVM泛化能力的方法.仿真试验表明,该方法对提高SVM的泛化能力是有效的.
A SVM constructs an optimal separating hyper-plane through maximizing the margin between two classes in high-dimensional feature space. Based on statistical learning theory, the margin scale reflects the generalization capability to a great extent. The bigger the margin scale takes, the better the generalization capability of SVMs will have. This paper makes an attempt to enlarge the margin between two support vector hyperplanes by feature weight adjustment. The experiments demonstrate that our proposed techniques in this paper can enhance the generalization capability of the original SVM classifiers.