位置:成果数据库 > 期刊 > 期刊详情页
Optimization of Fermentation Media for Enhancing Nitrite-oxidizing Activity by Artificial Neural Network Coupling Genetic Algorithm
  • ISSN号:1004-9541
  • 期刊名称:《中国化学工程学报:英文版》
  • 时间:0
  • 分类:TQ923[轻工技术与工程—发酵工程;化学工程] Q939.1[生物学—微生物学]
  • 作者机构:[1]School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
  • 相关基金:Supported by the National Natural Science Foundation of China (21076090).
中文摘要:

二种人工智能技术,人工的神经网络和基因算法,被使用为改进亚硝酸根氧化的亚硝酸根氧化率优化发酵媒介细菌。实验与基因算法获得的中等部件的作文被进行,并且试验性的数据被用来造 BP (背繁殖) 神经网络模型。当输入向量,和亚硝酸根氧化率被用作模型的产量向量,六个中等部件的集中被使用。BP 神经网络模型被用作基因算法的客观函数为最大的亚硝酸根氧化率发现最佳中等作文。最大的亚硝酸根氧化率是 0.952 g NO2-N

英文摘要:

Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国化学工程学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国化学工业与化学工程学会
  • 主编:
  • 地址:北京东城区青年湖路13号
  • 邮编:100011
  • 邮箱:cjche@cip.com.cn
  • 电话:010-64519487/88
  • 国际标准刊号:ISSN:1004-9541
  • 国内统一刊号:ISSN:11-3270/TQ
  • 邮发代号:
  • 获奖情况:
  • 1998年化工系统优秀信息成果一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国高分子图书馆,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:385