在这篇论文,猛抛的特征在一个热对流系统( TCS )遮蔽在8月2日在 15:00 BT (北京时间)发生在中国的东南的大陆, 2003 被 usingTRMM 在中央西方的副热带的和平的反气旋( WSPA )学习热带降雨测量使命 PR ( precipitution 雷达)和红外红外辐射;红外线辐射大小。在 horizontal 和 vertical,在暴风雨顶之中的关系,云顶,和表面雨的猛抛的云结构评价特别地被分析。结果显示出那在 500 hPa 和在处于在为 TCSprecipitation 发生的动力学和潮湿的中央 WSPAsupply 必要的条件的 850 hPa 的潮湿流动的强壮的集中的强壮的上升表情。猛抛遮蔽的大多数 TCS 的水平比例尺关于 30-40 km 的 TRMM PR 观察表演,他们的平均垂直比例尺在 10 km,和最大的 reaches17.5 km 上面。那些 TCS 云的表面附近的最大的雨率在 50 公里 h~ 以外(-1) 。TCS 云的吝啬的雨侧面证明它在 5 km 高度的最大的雨率是比环境的估计的结冰水平低的 1 km。与中央相比放大对流系统(MCS ) “ 98.7.20'' ,两个系统有从两吝啬的雨侧面,而是 TCS 显示的最大的雨率的一样的高度比 MCS 深得多。从到近的表面的最大的雨率的高度,侧面证明在 TCS 减少的那雨率在 MCS 是比那快的,它暗示蒸发处理发生在 TCS 的强壮的微滴。当暴风雨顶更低时,在云顶,暴风雨顶,和表面雨率分析之中的关系显示云顶的一个大变化。相反,越高暴风雨顶,越多一致的云顶和暴风雨顶。并且,越大表面雨率,越 higher 和为云顶和暴风雨顶一致的更多。在结束,结果暴露那非猛抛的云和晴朗天空的区域部分分别地是 86% 和 2% 。猛抛的区域部分遮蔽仅仅关于 1/8 非猛抛的云的。
In this paper, characteristics of precipitating clouds in a thermal convective system (TCS) occurred in the southeastern mainland of China at 15:00 BT (Beijing time) on August 2, 2003 in the central western subtropical Pacific anticyclone (WSPA) is studied by using TRMM tropical rainfallmeasuring mission PR (precipitution radar) and IR Infrared radiation measurements. The precipitating cloud structures in both horizontal and vertical, relationship among storm top, cloud top, and surface rain rate are particularly analyzed. Results show that a strong ascending air at 500 hPa and a strong convergence of moisture flux at 850 hPa in the central WSPA supply necessary conditions both in dynamics and moisture for the happening of the TCS precipitation. The TRMM PR observation shows that the horizontal scale of the most TCS precipitating clouds is about 30-40 kin, their averaged vertical scale is above 10 kin, and the maximum reaches 17.5 kin. The maximum rain rate near surface of those TCS clouds is beyond 50 mm h^-1. The mean rain profile of the TCS clouds shows that its maximum rain rate at 5 km altitude is i km lower than the estimated freezing level of the environment. Compared with the mesoscale convective system (MCS) of "98.7.20", both systems have the same altitude of the maximum rain rate displayed from both mean rain profiles, but the TCS is much deeper than the MCS. From the altitude of the maximum rain rate to near surface, profiles show that rain rate reducing in the TCS is faster than that in the MCS, which implies a strong droplet evaporation process occurring in the TCS. Relationship among cloud top, storm top, and surface rain rate analysis indicates a large variation of cloud top when storm top is lower. On the contrary, the higher the storm top, the more consistent both cloud top and storm top. And, the larger the surface rain rate, the higher and more consistent for both cloud top and storm top. At the end, results expose that area fractions of non-precipitating clouds and c