位置:成果数据库 > 期刊 > 期刊详情页
面向微博的多实体稀疏关系数据联合聚类
  • ISSN号:1000-436X
  • 期刊名称:通信学报
  • 时间:2015
  • 页码:151-159
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:哈尔滨工程大学信息安全研究中心,黑龙江哈尔滨150001
  • 相关基金:国家高技术研究发展计划(“863”计划)基金资助项目(No.2012AA012802); 国家自然科学基金资助项目(No.61170242)
  • 相关项目:在线网络社区话题内容与社区结构协同演化机理与验证方法研究
中文摘要:

针对大规模微博中多实体间的稀疏关系数据,提出一种面向多实体稀疏关系数据的高效联合聚类算法。在算法中,为了充分利用多关系数据,提出了一种顽健的约束信息嵌入方法构建关系矩阵,降低了矩阵的稀疏性,进一步提高了算法的准确率。在稀疏约束的块坐标下降框架下,关系矩阵通过非负矩阵三分解算法同时获得不同实体的聚类指示矩阵。非负矩阵分解过程中,通过高效的投射算法实现快速求解,确保了聚类结果的稀疏结构。在人工和真实数据集上的实验表明,算法在3个指标上都具有明显提高,特别是在极端稀疏数据上的效果更加明显。

英文摘要:

For large-scale sparse relation data of multi-entity in microblogging, an efficient co-clustering algorithm was proposed which processed sparse relation data of multi-entity. In order to take full advantage of multi-relational data when using this algorithm, a robust constraint information embedding algorithm was proposed to construct relation matrix, and the performance of relation mining was improved by reducing matrix sparsity. In the sparse constraint block coordinate descent framework, relation matrix concurrently obtained cluster indication matrix of different entities by non-negative matrix tri-factorization. In non-negative matrix factorization, to ensure sparse structure of clustering result, a quick solution was achieved through efficient projection algorithm. Experiments on synthetic and real data sets show that proposed algorithm goes beyond all the baselines on three indicators. The improvement is more significant especially when processing extremely sparse data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019