位置:成果数据库 > 期刊 > 期刊详情页
可变神经网络结构下的遥感影像光谱分解方法
  • ISSN号:1000-3428
  • 期刊名称:计算机工程
  • 时间:2012
  • 页码:1-3
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]武汉大学测绘遥感信息工程国家重点实验室,武汉430079, [2]三亚市国土环境资源信息中心,海南三亚572000, [3]华中师范大学城市与环境科学学院,武汉430079, [4]河南大学环境与规划学院,河南开封475000
  • 相关基金:国家自然科学基金资助项目(41101413);高等学校博士学科点专项科研基金资助项目(20110141120073);中央高校基本科研业务费专项基金资助项目(904275839)
  • 相关项目:基于近景多光谱遥感信息反演建筑物三维模型关键问题研究
中文摘要:

多层感知神经网络(MLP)是主流的非线性分解方法,但是目前缺乏有效方法处理MLP分解结果中的丰度负值问题。为此,提出一种可变神经网络结构的方法,逐步去除负值丰度对应的端元,并调整相应的网络结构使之针对剩余的端元进行分解。通过武汉地区模拟TM遥感影像实验可以发现,该方法与传统MLP方法以及线性光谱分解方法的平均误差分别为0.0777、0.08l9、0.0943,说明该方法的分解精度高于其他2种分解方法,能克服丰度负值问题。

英文摘要:

Spectral unmixing of remote sensing images is a hotspot in remote sensing field, and Multilayer Perception(MLP) neural network is a common nonlinear spectral unmixing algorithm. However, currently there is no effective way to deal with the negative abundances derived by the network. To solve this problem, a MLP neural network with variable architecture is proposed. By discarding endmembers with negative abundances, the MLP architecture is modified to unmix the rest endmembers, so a remote sensing image is finally unmixed. An experiment using a simulated TM image shows that the average errors of the proposed method, conventional MLP method and linear spectral unmixing model are 0.077 7, 0.081 9 and 0.094 3 respectively, thus the proposed method outperforms the other two. Therefore, the proposed method can overcome the negative abundance problem effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139