位置:成果数据库 > 期刊 > 期刊详情页
基于多尺度分析与神经网络的需水量预测
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安理工大学水电学院,西安710048
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.50479024).
中文摘要:

采用小波多尺度分解的方法,将需水量时间序列分解为多个较平稳的细节子序列和一个趋势序列,再利用BP神经网络对分解后的各序列进行预测,把预测后的序列聚合重构,得到预测结果。以新疆石河子地区的需水量为例对该方法作了验证。表明多尺度分析与神经网络耦合预测,比单一BP神经网络预测精度更高,可满足实际需要。

英文摘要:

The time series of water demand can be decomposed into several stationary detailed time series and a tendency time series according to the algorithm of this multi-scales in this paper.Decomposed time series are forecasted with BP neural network to obtain the prediction series.Then the forecasting results are reconstructed by wavelet theory.So,the forecasting result is gained. An example of water demand of Shihezi in Xinjiang Province is used to testify the feasibility of the new method.The results show that the method of coupling multi-scale decomposition and BP neural network has advantages over the traditional BP neural network in predicted qualification-rate, and has feasibility in forecasting of time series.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887