Darboux 转变(DT ) 向我们提供一条全面途径构造准确、明确的答案到否定扩大 KdV (eKdV ) 方程,由哪个一些新答案象单个 soliton 那样, negaton,并且在答案上安置为 eKdV 方程被计算。我们再发现 soliton 答案与在有限振幅[A.V Slyunyaev 和 E.N Pelinovskii, J。终止 Theor。Phys。89 (1999 ) 173 ] 并且讨论这 soliton 和单个 soliton 之间的差别。我们澄清在 eKdV 方程的准确答案之间的关系并且光谱参数。而且,相互作用单个二 solitons,安置在上并且 negaton,安置在上并且 soliton,并且二安置 ons 详细被学习。
Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular soliton, negaton, and positon solutions are computed for the eKdV equation. We rediscover the soliton solution with finiteamplitude in [A.V. Slyunyaev and E.N. Pelinovskii, J. Exp. Theor. Phys. 89 (1999) 173] and discuss the difference between this soliton and the singular soliton. We clarify the relationship between the exact solutions of the eKdV equation and the spectral parameter. Moreover, the interactions of singular two solitons, positon and negaton, positon and soliton, and two positons are studied in detail.