位置:成果数据库 > 期刊 > 期刊详情页
基于社会标注系统的Web用户聚类算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉大学计算机学院,武汉430072
  • 相关基金:国家自然科学基金(No.61272277).
中文摘要:

意见领袖挖掘是社会网络研究的重要课题,对于舆情控制、信息传播等方面具有重要意义。LeaderRank算法是一个有效的意见领袖挖掘算法。为提高LeaderRank算法的准确性和抗干扰能力,在LeaderRank算法基础上,加入用户之间的情感倾向、用户活跃程度,提出了改进的LeaderRank算法。基于SIR模型的实验验证表明,改进算法的准确性和抗干扰能力均得到了有效提升。

英文摘要:

Opinion leader mining is an important topic of social network research which is of great significance in terms of internet public opinion control and information dissemination. LeaderRank is an effective opinion leader mining algorithm. This paper proposes a new algorithm based on LeaderRank with sentiment analysis and user' s liveness to identify the opinion leaders in comment network to achieve a better performance. Experiments based on SIR model show that both accuracy and anti-jamming capability of the proposed algorithm have been effectively imr~roved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049