位置:成果数据库 > 期刊 > 期刊详情页
基于多特征的藏文微博情感倾向性分析
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西北民族大学中国民族语言文字信息技术重点实验室,甘肃兰州730030
  • 相关基金:国家自然基金(61262054);西北民族大学中央专项资金资助研究生项目(Yxm2014001);国家科技支撑计划项目(2014BAK10B03);甘肃省科技重大专项项目(1203FKDA033)
中文摘要:

中英文微博大都以单一语种来表述,而将近80%的藏文微博都是以藏汉混合文本形式呈现,若只针对藏文内容或中文内容进行情感倾向性分析会造成情感信息丢失,无法达到较好效果。根据藏文微博的表述特点,该文提出了基于多特征的情感倾向性分析算法,算法使用情感词、词性序列、句式信息和表情符号作为特征,并针对藏文微博常出现中文表述的情况,将中文的情感信息也作为特征进行情感计算,利用双语情感特征有效提高了情感倾向性分析的效果。实验显示,该方法对纯藏文表述的微博情感倾向性分析正确率可达到79.8%,针对藏汉双语表述的微博在加入中文情感词、中文标点符号等特征后,正确率能够达到82.8%。

英文摘要:

While most Chinese or English micro-blogs are in just one single language, nearly 80% Tibetan Micro blogs are mixed text of Tibetan and Chinese languages. If emotion orientation analysis is only targeted at Tibetan or Chinese, this analysis would he partial and fail to achieve its goal. According to the expression features of Tibetan micro-hlogs, this paper puts forward the algorithm of multi-feature sentiment analysis, upon such features as emo- tional words, the sequence of part of speech, sentence information and emoticon signs. Dealing with Tibetan microblogs, this algorithm takes into consideration the emotional information of Chinese language and has improved the effect of sentiment analysis with the help bilingual information. The experimental results indicate that the sentiment analysis accuracy concerning monolingual Tibetan expression is 79.8%, which is boosted up to 82.8 % after taking into consideration of the features of Chinese emotional words and Chinese punctuations.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136