位置:成果数据库 > 期刊 > 期刊详情页
The Common Principal Component Analyses of Multi-RCMs
  • 期刊名称:Atmospheric and Oceanic Science Letters
  • 时间:0
  • 页码:14-20
  • 分类:P462[天文地球—大气科学及气象学] O212.4[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of . Sciences, Beijing 100029, China, [2]Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • 相关基金:Acknowledgements. This study was supported by the National Natural Science Foundation of China (General Program, Grant No. 40975048), the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Acad- emy of Sciences (Grant No. XDA05090207), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No KZCX2-EW-202).
  • 相关项目:中国区域人为热释放对气候增暖的影响评估及模拟研究
中文摘要:

在地区性的气候模型的阶段 II 基于六个地区性的气候模型( RCM )的10年的模拟为亚洲的内部比较的工程( RMIP ),部件( CPC )被用来分析并且比较温度和 降水的空间与时间的特征的普通主管的统计方法在中国上由 multi-RCMs 模仿了的 multivariate 包括吝啬的气候国家和他们的季节的转变, interannual 可变性的空间分发,和 interannual 变化。CPC 是为分析不同模型的结果的一个有效统计工具。与传统的统计方法相比, CPC 分析为观察和模拟结果提供一幅更完全的统计图画。climatological 意味着的 CPC 分析表演和特征的结果季节转移中国能被 RCM 精确地模仿。然而,大偏爱在某些年里或为单个模型在 interannual 变化存在。

英文摘要:

Based on a 10-year simulation of six Regional Climate Models (RCMs) in phase II of the Regional Cli- mate Model Inter-Comparison Project (RMIP) for Asia, the multivariate statistical method of common principal components (CPCs) is used to analyze and compare the spatiotemporal characteristics of temperature and precipi- tation simulated by multi-RCMs over China, including the mean climate states and their seasonal transition, the spatial distribution of interannual variability, and the in- terannual variation. CPC is an effective statistical tool for analyzing the results of different models. Compared with traditional statistical methods, CPC analyses provide a more complete statistical picture for observation and si- mulation results. The results of CPC analyses show that the climatological means and the characteristics of sea- sonal transition over China can be accurately simulated by RCMs. However, large biases exist in the interannual variation in certain years or for individual models.

同期刊论文项目
同项目期刊论文