本文研究了带有饱和发生率和两个离散时滞的病毒动力学模型.通过构造Lyapunov函数和运用Lasalle不变原理,得到了模型的无病平衡点和地方病平衡点的全局渐近稳定性.当基本再生数R0〈1时,模型的无病平衡点是全局渐进稳定的;当R0〉1时,模型的地方病平衡点是全局渐进稳定的.
In the paper,the virus dynamics model with a saturation infection rate and two discrete delays is investigated. By using suitable Lyapunon functions and the Lasalle invariant principle,the global asymptotic stability of the infection-free equilibrium and the endemic equilibrium for the viral epidemic model is obtained. If R0 1,the infection-free equilibrium is locally asymptotically stable; if R0 1,the endemic equilibrium is globally asymptotically stable.