基于有限元理论,采用二节点非线性索单元与线性杆单元离散接触网系统;根据索、杆的精确表达式推导单元切线矩阵;根据结构拓扑关系组装刚度矩阵和不平衡力矩阵,建立整体非线性平衡方程;利用 Newton-Raphson法求解该平衡方程,建立接触网的初始平衡状态三维模型,并在模拟算例中得到线性收敛的计算结果。将计算得到的吊弦长度与现有的文献和软件计算结果对比,验证了本方法和模型的有效性。
Based on the Finite Element Method,the catenary system was treated as a combination of two-node nonlinear cable elements and linear truss elements.By the accurate equations of cable and truss,the tangent matrices of the elements were deduced.According to structural topology information,the stiffness matrices and unbalanced force matrices were established,so as that the nonlinear integral equilibrium equation was built;through solving the equation with the Newton-Raphson method,the 3D initial equilibrium state model of catenary was built.The dropper length was calculated by examples and by comparing the results with published literature and commercial software the efficiency of the proposed method was vertified.