考虑空间数据分布的复杂性与不连续性,提出了一种点目标聚类方法. 算法利用全要素Voronoi图准确识别与表达点目标与线面实体的空间相关性;根据点目标位置分布特征计算面积阈值来控制聚类的粒度,同时以空间尺度变化下面积阈值的恒定作为判断尺度收敛的条件,实现点目标的多尺度划分,时间复杂度为O(nlogn ).经试验验证,聚类尺度随点目标分布特征自适应收敛,算法无须自定义参数,能够有效地发现受线面目标约束的任意形态点目标集群,对异常值处理稳健.