位置:成果数据库 > 期刊 > 期刊详情页
基于标签系统中聚类分析的个性化推荐算法
  • ISSN号:1003-3254
  • 期刊名称:《计算机系统应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京邮电大学网络与交换技术国家重点实验室,北京100876, [2]东信北邮信息技术有限公司,北京100191
  • 相关基金:国家自然科学基金(61072057);长江学者和创新团队发展计划(IRT1049);国家科技重大专项(2011ZX03002-001-01).
中文摘要:

随着YouTube、Flickr和Last.fm等社会化网络的兴起,标签系统在日常生活中扮演着越来越重要的作用.为了给用户提供更优质的推荐,分析用户为不同资源打标签的行为就显得尤为重要.本文将主要的社区发现算法应用到标签系统中的聚类分析中,并比较它们在不同数据集上的表现,设计出针对标签系统的个性化推荐算法.实验结果表明,本文提出的算法能很好的发现不同用户的兴趣,提高推荐系统的质量.

英文摘要:

With the rise of YouTube, Flickr, Last.fro and other social networks, tagging systems play an increasingly important role in our everyday life. Analyzing user's tagging behavior of different resources is very important in providing high quality services. In this paper, major community structure detection algorithms are implemented in clustering analysis in tagging system. By comparing their performances on different datasets, a personalized recommendation algorithm for tagging system is designed. Experimental results indicate that the proposed algorithm performs well in detecting different user interests and thus enhances the quality of the recommendation system..

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机系统应用》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所
  • 主编:苏振泽
  • 地址:北京8718信箱
  • 邮编:100190
  • 邮箱:csa@iscas.ac.cn
  • 电话:010-62661041
  • 国际标准刊号:ISSN:1003-3254
  • 国内统一刊号:ISSN:11-2854/TP
  • 邮发代号:82-558
  • 获奖情况:
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2000版)
  • 被引量:15201