三分Cantor集在分形几何中是一个有重要意义的典型集合。对此作进一步的推广,讨论λ-Cantor集的性质。先引入了Hausdorff度量和符号空间度量,并对Hausdorff度量和符号空间的完备性做出证明,然后对λ-Cantor集的对称性利用符号空间进行进一步分析。
The middle-third of cantor set in fractal geometry is a typical set with the vital significance. This paper further promoted,and discussed the properties of the set.Firstly,it introduced the Hausdorff metric and symbolic space metric,and proved the completeness of Hausdorff metric and symbolic space. Then symbolic space was used to analyze the symmetry of the set.