为了研究高强钢筋与再生混凝土间的黏结作用机理,以再生粗骨料取代率和高强钢筋埋置长度为变化参数,设计了15个边长为150mm的高强钢筋再生混凝土立方体试件,并进行推出试验。通过试验获取了加载端和自由端荷载一滑移曲线的特征点参数,并回归得到各特征点黏结强度计算公式;分析了各变化参数对黏结强度的影响,并采用实用黏结强度计算公式进行对比计算。研究结果表明:高强钢筋与再生混凝土试件的黏结破坏以劈裂破坏为主;特征黏结强度均表现为随取代率的增加而呈现下降趋势,高强钢筋与再生混凝土的界面黏结强度随埋置长度的增加而有所增大。
In order to research the bond mechanism between high strength steel bar and recycled coarse aggregate concrete (RCAC) , 15 high strength steel bar RCAC cube specimens whose length of side was 150 mm were designed to launch the push-out test with recycled coarse aggregate replacement ratio and embedment length of high strength steel bar being the changing parameters. Characteristic point parameters on curves of loading-end and free-end were obtained, and computational formula of each feature point bond strength was gained by regression. The influence of each changing parameter on bond strength was analyzed, and practical bond strength calculation formulas were adopted to calculate contrastively. The result shows that the main failure mode between high strength steel bar and RCAC is splitting failure. The bond stength at each characteristic point is decreased with an increase in the replacement ratio of RCA. The interface bonding strength between steel bar and RCAC is increased with the increasing of embedment length.