位置:成果数据库 > 期刊 > 期刊详情页
基于惩罚距离的混合模型分量数自动估计算法
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]安徽大学计算机科学与技术学院,安徽合肥230039, [2]新南威尔士大学,澳大利亚悉尼NSW2052
  • 相关基金:国家自然科学基金资助项目(60772122);高等学校博士学科点专项科研基金资助项目(20070357001);安徽省高等学校自然科学研究重点项目(KJ2007A045)
中文摘要:

期望最大化(EM)算法是对有限混合模型进行参数估计的通用算法,然而标准EM算法中所需的混合模型分量数往往是未知的.文中研究了一种采用惩罚性最小匹配距离估计分量数的方法,并结合贪婪EM算法框架,提出了一种可以在进行参数估计的同时快速准确地自动估计高斯混合模型分量数的算法,最后通过一元和二元高斯混合模型的仿真实验验证了该算法的有效性.

英文摘要:

The expectation-maximization (EM) algorithm is a popular approach to the parameter estimation of the finite mixture model (FMM). A drawback of this approach is that the number of components of the FMM is not known in advance. In this paper, a penalized minimum matching distance-guided EM algorithm is discussed. Then, under the framework of Greedy EM, an automatic algorithm with high speed and accuracy is proposed to esti- mate the component number of the Gaussian mixture model. The effectiveness of the proposed algorithm is finally verified by the simulations of univariate and bivariate Gaussian mixture models.

同期刊论文项目
期刊论文 47 会议论文 20 著作 1
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954