位置:成果数据库 > 期刊 > 期刊详情页
具有动态级联结构的在线Boosting算法
  • ISSN号:1001-0505
  • 期刊名称:东南大学学报(自然科学版)
  • 时间:0
  • 页码:241-245
  • 语言:中文
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国农业大学理学院
  • 相关基金:国家自然科学基金资助项目(60573158,10771213);中国农业大学博士基金资助项目(2007038)
  • 相关项目:不确定信息处理中的最优化方法
中文摘要:

针对在线Boosting由于提前设定弱分类器个数导致分类器的分类复杂度受到限制的缺陷,提出了一种新的具有动态级联结构的在线Boosting算法.该算法不但具有一般级联结构的特点,而且能根据输入样本分类的难度来实时地调整级联结构的层数,从而使得目标检测器在检测速度和检测精度方面达到很好的平衡.与一般的方法不同,该算法并没有记录一段短暂的历史样本片段来确定弱分类器的阈值,而是把每一个弱分类器的输出值视为一个随机变量,从而进一步估计它的密度函数.然后以迭代的方式估计出整个强分类器的密度函数,进而构建出在线Boosting的动态级联结构.实验结果表明:与原始的在线Boosting算法相比,该算法大大提高了目标检测的速度和精度.

同期刊论文项目
期刊论文 28 会议论文 9
期刊论文 24 会议论文 4
同项目期刊论文
期刊信息
  • 《东南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323
  • 国际标准刊号:ISSN:1001-0505
  • 国内统一刊号:ISSN:32-1178/N
  • 邮发代号:28-15
  • 获奖情况:
  • 先后荣获第三届国家期刊奖百种重点期刊奖,2006-2...,2013年荣获首届江苏省新闻出版政府奖"报刊奖"
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23651