位置:成果数据库 > 期刊 > 期刊详情页
基于双子支持向量机的信用卡流失分析
  • ISSN号:1000-0984
  • 期刊名称:《数学的实践与认识》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京物资学院物流学院,北京101149, [2]北京钢研高纳股份有限公司,北京100081, [3]中国科学院虚拟经济与数据科学研究中心,北京100190
  • 相关基金:国家自然科学基金(11271361); 北京市青年英才计划资助项目
中文摘要:

银行信用卡业务属于高收益、高风险的业务,如何实现对信用卡的客户流失控制是发卡银行迫切需要解决的问题.目前,随着银行积累了大量的数据,并建立了数据仓库,使得采用数据挖掘技术来实现信用卡客户流失分析成为了可能.利用双子支持向量机,基于某商业银行的信用卡数据,建立了信用卡流失分析模型,实验结果证明了方法的有效性.

英文摘要:

Bank credit card business is a high-profit and high-risk business, and how to control the loss of credit card customer is an urgent issue. It is possible for making an analysis on the loss of credit card customer using data mining technology for a lot of data that the bank has accumulated and the establishment of data warehouse. In this paper we propose an analysis model on the loss of credit card customer based on twin support vector machines using the commercial bank's credit card data, and numerical experiments confirm the validity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学的实践与认识》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:林群
  • 地址:北京大学数学科学学院
  • 邮编:100871
  • 邮箱:bjmath@math.pku.edu.cn
  • 电话:010-62759981
  • 国际标准刊号:ISSN:1000-0984
  • 国内统一刊号:ISSN:11-2018/O1
  • 邮发代号:2-809
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22973