位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络的薄壳多目标振动优化控制研究
  • ISSN号:0577-6686
  • 期刊名称:《机械工程学报》
  • 时间:0
  • 分类:TB535[理学—物理;理学—声学]
  • 作者机构:[1]西安交通大学机械工程学院,西安710049, [2]西安交通大学机械制造系统工程国家重点实验室,西安710054
  • 相关基金:国家自然科学基金(51405370,51225501)、国家重点基础研究发展计划(973计划,2015CB057400)、陕西省自然科学基金(2015JQ5184)和陕西省博士后基金资助项目.
中文摘要:

针对目前主动控制方法主要集中于减振降噪方面的研究,无法满足工程中频率特性改变的需求等问题,结合神经网络的多目标并行处理能力,提出基于神经网络的多目标振动优化控制方法。首先,基于神经网络算法,构造频域主动控制架构,相较于时域方法,该架构一个控制循环只需一次傅里叶变换(Fast Fourier transform,FFT),无傅里叶逆变换(Inverse fast Fourier transform,IFFT),因此,控制时效性得到有效保证。其次,基于全局频域误差与特征频点误差,构造混合型误差评判准则,提升算法的自适应性,可靠性与抗干扰能力。再次,基于多自由度系统方程,研究了多目标控制中的可控性问题,保证控制的可行性。最后,通过大型薄壳结构的八点多目标振动优化控制,有效验证了方法的有效性与可行性。

英文摘要:

Active control method mainly focuses on vibration and noise suspension at present thus can’t satisfy the requirement of frequency characteristics control. Therefore, based on the multi-objective parallel processing ability of neural network, the multi-objective vibration optimization method is proposed to deal with this problem. First, the frequency-domain control frame is constructed based on neural network algorithm. Compared with traditional time-domain methods, the proposed control frame just require once FFT in each iteration and no IFFT needed, so the control efficiency can be guaranteed. Second, hybrid error criterion is constructed by combining global frequency error and frequency node error together to improve the adaptability, reliability and anti-interference ability. Third, the controllability problem of the multi-objective method in implementation is studied through mathematical analysis. At last, the effectiveness of the proposed multi-objective method is verified through vibration optimization on eight points of shell structure.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603