位置:成果数据库 > 期刊 > 期刊详情页
贝叶斯推理模型耦合非平稳边缘保持先验的图像模糊消除
  • ISSN号:1001-3563
  • 期刊名称:《包装工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]平顶山学院,平顶山467002, [2]河南城建学院,平顶山467000
  • 相关基金:国家自然科学基金(U1204611);河南省自然科学基金(132300410278)
中文摘要:

目的 针对现行图像去模糊消除机制忽略了图像空间结构特征,降低了模糊消除效果,且算法稳定性不佳,无法克服解模糊等的不足,提出了贝叶斯模型耦合非平稳先验的图像去模糊机制。方法基于二阶统计量方法,定义模糊函数;引入滤波因子和超参数,构造非平稳边缘保持先验模型;基于贝叶斯推理,引入雅克比矩阵设计了超参数动态更新机制;用耦合先验模型与贝叶斯模型完成图像复原。在仿真平台上测试了算法的性能。结果 与其他几种机制相比,提出的算法机制去模糊质量更好,局部放大后纹理细节仍然清晰,并且去模糊前后图像的结构相似度更高。结论 提出的算法具有较佳的图像去模糊效果,重构质量理想。

英文摘要:

Objective The current image deblurring removal mechanism ignores the image space structure characteristics, which reduces the deblurring effect, and there are other problems such as poor stability of these algorithms, which cannot overcome the lack of ambiguity. Targeting at these problems, we proposed a Bayesian model coupled non-stationary priors image deblurring mechanism. Methods Based on second-order statistics, vague function was defined. Filtering factor and ultra-parameter structure were introduced to maintain a priors model of non-stationary edge preserving. Based on Bayesian inference, Jacobian matrix was introduced to design the hyperparameter dynamic update mechanism. The coupled priors model and Bayesian model were used to complete image reconstruction. The performance of the algorithm was tested on the simulation platform. Results Compared with several other mechanisms, the mechanism proposed in this paper showed better deblurring performance. The texture details remained clear after local amplification, and the structural similarity of the images before and after deblurring was higher. Conclusion The proposed algorithm had relatively good image deblurring performance and the reconstruction quality was ideal.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《包装工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国兵器装备集团公司
  • 主办单位:中国兵器工业第五九研究所
  • 主编:吴护林
  • 地址:重庆市九龙坡区石桥铺渝州路33号
  • 邮编:400039
  • 邮箱:designartj@126.com
  • 电话:023-68792836
  • 国际标准刊号:ISSN:1001-3563
  • 国内统一刊号:ISSN:50-1094/TB
  • 邮发代号:78-30
  • 获奖情况:
  • 连续三届中文核心期刊,中国兵器工业总公司优秀期刊,重庆市质量优秀期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:26057