位置:成果数据库 > 期刊 > 期刊详情页
The Prospective Two-Dimensional Graphene Nanosheets: Preparation, Functionalization, and Applications
  • ISSN号:1000-6818
  • 期刊名称:《物理化学学报》
  • 时间:0
  • 分类:TQ127.11[化学工程—无机化工] TB383.1[一般工业技术—材料科学与工程]
  • 作者机构:Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University
  • 相关基金:supported by the National Natural Science Foundation of China (No. 50902092 and 51102164);Science and Technology Commission of Shanghai Municipality (No. 1052nm06800 and 1052nm02000);Shanghai Pujiang Program (No. 11PJD011);the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
中文摘要:

Graphene, as an intermediate phase between fullerene and carbon nanotube, has aroused much interests among the scientific community due to its outstanding electronic, mechanical, and thermal properties.With excellent electrical conductivity of 6000 S/cm, which is independent on chirality, graphene is a promising material for high-performance nanoelectronics, transparent conductor, as well as polymer composites. On account of its Young’s Modulus of 1 TPa and ultimate strength of 130 GPa, isolated graphene sheet is considered to be among the strongest materials ever measured. Comparable with the single-walled carbon nanotube bundle,graphene has a thermal conductivity of 5000 W/(m·K), which suggests a potential application of graphene in polymer matrix for improving thermal properties of the graphene/polymer composite. Furthermore, graphene exhibits a very high surface area, up to a value of 2630 m~2/g. All of these outstanding properties suggest a wide application for this nanometer-thick, two-dimensional carbon material. This review article presents an overview of the significant advancement in graphene research: preparation, functionalization as well as the properties of graphene will be discussed. In addition, the feasibility and potential applications of graphene in areas, such as sensors, nanoelectronics and nanocomposites materials, will also be reviewed.

英文摘要:

Graphene, as an intermediate phase between fullerene and carbon nanotube, has aroused much interests among the scientific community due to its outstanding electronic, mechanical, and thermal properties. With excellent electrical conductivity of 6000 S/cm, which is independent on chirality, graphene is a promising material for high-performance nanoelectronics, transparent conductor, as well as polymer composites. On account of its Young's Modulus of 1 TPa and ultimate strength of 130 GPa, isolated graphene sheet is considered to be among the strongest materials ever measured. Comparable with the single-walled carbon nanotube bundle, graphene has a thermal conductivity of 5000 W/(m.K), which suggests a potential application of graphene in polymer matrix for improving thermal properties of the graphene/polymer composite. Furthermore, graphene exhibits a very high surface area, up to a value of 2630 m(2)/g. All of these outstanding properties suggest a wide application for this nanometer-thick, two-dimensional carbon material. This review article presents an overview of the significant advancement in graphene research: preparation, functionalization as well as the properties of graphene will be discussed. In addition, the feasibility and potential applications of graphene in areas, such as sensors, nanoelectronics and nanocomposites materials, will also be reviewed.

同期刊论文项目
期刊论文 31 会议论文 6 专利 8
期刊论文 20 会议论文 1 专利 3
同项目期刊论文
期刊信息
  • 《物理化学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:北京大学化学与分子工程学院承办
  • 主编:刘忠范
  • 地址:北京大学化学楼
  • 邮编:100871
  • 邮箱:whxb@pku.edu.cn
  • 电话:010-62751724
  • 国际标准刊号:ISSN:1000-6818
  • 国内统一刊号:ISSN:11-1892/O6
  • 邮发代号:82-163
  • 获奖情况:
  • 中文核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:24781