位置:成果数据库 > 期刊 > 期刊详情页
基于多分类概率极限学习机的污水处理过程操作工况识别
  • ISSN号:0438-1157
  • 期刊名称:化工学报
  • 时间:2012
  • 页码:3173-3182
  • 分类:TP274.3[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]沈阳化工大学信息工程学院,辽宁沈阳110042, [2]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819
  • 相关基金:国家自然科学基金项目(61203102);中国博士后科学基金项目(20100471464)
  • 相关项目:湿法球磨机负荷自适应选择性集成模型研究
中文摘要:

污水处理过程复杂多变的运行工况以及系统脆弱的抗负荷冲击能力,常常导致污水处理厂运行目标难以实现,有效识别污水操作工况的变化对污水处理过程安全运行和操作优化十分重要。为增强未知样本分类可靠性,在概率极限学习机二分类基础上,将其扩展到多分类概率极限学习机方法 (extreme learning machine)。该方法首先采用极限学习机建立污水处理过程实时变量和污水处理过程工况编码之间的预报模型,然后根据类别的输出预报值分别建立每个类训练样本潜在函数的均值,确定所有类的条件概率密度函数,非线性最小二乘辨识条件概率密度函数参数,最后根据贝叶斯原理计算所有类的后验概率,由后验概率最大值判别样本所属类别。以辽宁某城市污水处理厂实时数据为背景进行验证,实验结果表明多分类概率极限学习机分类的可靠性和准确性优于极限学习机分类方法。

英文摘要:

Due to the complex varying operational conditions and weak stability to resist the impact loads of influent flow rate and quality,it is difficult to satisfy operational objective of wastewater treatment plants.Therefore,the effective identification of the operational conditions for the complex wastewater treatment processes becomes one of the most important issues due to the potential advantages to be gained from reduced costs,improved productivity and increased production quality.A multi-classification probabilistic extreme learning machine(ELM)was proposed to enhance the reliability of classification by using the combination of extreme learning machine and the Bayesian decision theory.Extreme learning machine was used to build the output coding model between the real time process variables and the operational condition coding in the wastewater treatment process.ELM prediction values fluctuated around the class encoding following a normal Gaussian distribution.A potential function was calculated for each training sample based on the density methods.The potential functions of the training samples for each class were averaged to obtain the probability density function of each class.Parameters of probability density function for each class were estimated by the nonlinear least squares method.It could decrease the misclassification to classify the unknown samples due to the uncertainty of ELM predictions.The proposed method was verified with the data from a small scale industrial wastewater treatment plant,located in Liaoning province,China.Experimental results showed that the proposed method had a relatively better performance than ELM on classification accuracy.

同期刊论文项目
期刊论文 32 会议论文 5 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185