物流配送中心选址不仅影响运输等成本,而且也影响顾客的服务水平,在现代物流中具有重要的现实意义。针对物流配送中心选址问题,文章提出了一种基于改进粒子算法的智能求解方法,建立了物流配送中心选择模型,根据模型特点设计出了与免疫优化算法混合的粒子群算法、多种群搜索策略、混沌初始化方法、多样性评价方法。通过合理地设置算法参数,对物流配送中心选址问题进行实验比较,实验结果表明,该文算法的求解效果良好,并且求解的速度较快。
Logistics distribution center location not only decides the cost such as transportation cost, but also impacts the customer service level. It has important practical significance in modern logistics. For solving this logistics distribution center location problem, an improved particle swarm optimiza- tion(PSO) based intelligent optimization algorithm is proposed. Firstly, the mathematical model of the logistics distribution center location is set up. And for solving it, the PSO hybridized with immune optimization algorithm(IOA), multi-population search strategy, chaos initialization method and diver- sity evaluation method are designed. By setting parameters reasonably, the experiments are conducted and the results show that the proposed algorithm has better solving performance and rapid solving speed.