位置:成果数据库 > 期刊 > 期刊详情页
基于判别改进局部切空间排列特征融合的人脸识别方法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学电子信息与电气工程学院,上海200240, [2]驻上海航天局中心军事代表处,上海201109
  • 相关基金:国家自然科学基金(61004088)和上海市基础研究重点项目(09JC1408000)资助课题
中文摘要:

改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA能够同时保持类内与类问局部判别几何结构。此外,提出一种增强型Gabor—like复数小波变换以缓解照明和表情变化对人脸识别的影响。通过融合Gabor—like复数小波变换和原始图像特征,能够进一步提高人脸识别的准确率。在Yale和PIE人脸数据库上的实验结果证明了所提方法的有效性。

英文摘要:

Improved Local Tangent Space Alignment (ILTSA) is a recent manifold learning method. In this paper, based on linearization and discriminant extension of ILTSA, a novel feature extraction method named Discriminant ILTSA (DILTSA) is proposed with its theory and algorithm analysis. Based on maximum neighborhood margin criterion and ILTSA, DILTSA can preserve both local within-class and between-class geometry structures. In face recognition application, an augmented Gabor-like complex wavelet transform is proposed, which can efficiently alleviate the illumination and expression variation effect. An approach for face recognition based on the fusion of local and holistic features is developed. Experimental results on Yale and PIE face databases demonstrate the effectiveness of the proposed face recognition method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739