采用分子水平混合和低速球磨的方法制备铜包裹石墨烯/316L不锈钢复合粉体,通过放电等离子烧 结制备石墨烯增强316 L奥氏体不锈钢复合材料,研究铜及石墨烯对复合材料密度、硬度和拉伸性能的影 响,并对拉伸断口形貌进行了分析.结果表明:通过分子混合和球磨混合可制备铜包裹石墨烯与不锈钢均匀 混合的复合粉体.烧结过程石墨烯结构保持完整.铜包裹石墨烯增强体可明显改善烧结不锈钢复合材料的密 度、硬度、抗拉强度和屈服强度,使其分别提高3. 6%、17.4%、35.8%和34.5%.
The composite powder of graphene coated by copper and 316 L stainless steel was prepared through a molecular level mixing and ball milling,and then it was sintered by SPS to obtain a 316 L stainless steel matrix material reinforced with graphene coated by copper. Effects of graphene and copper on the density, hardness and tensile property of the sintered samples were investigated, and the fracture surface of the tensile samples was observed. The results showed that the stainless steel powder and the graphene coated by copper are mixed uniformly after the molecukr level mixing and the ball milling process. Structure of the graphene is stable during the sintering process. Therefore, the graphene coated by copper can significantly improve the density, hardness, tensile strength and yield strength of the sintered stainless steel by 3. 6% , 17. 4% , 35. 8% and 34.5% respectively.