切削力是高速切削过程中重要物理量之一,直接影响到加工质量和刀具寿命。文章采用中心复合响应曲面法建立了碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)高速铣削过程切削力模型,并用方差分析对模型及回归系数进行了显著性检验,分析了主轴转速、每齿进给和切削深度对切削力的影响规律,为高速铣削过程中切削参数的选择及切削力的控制提供了试验依据。试验结果表明:该模型能较好地预测切削力,切削深度和每齿进给对切削力的影响较大,切削力随着切削深度或每齿进给的增大而增大,主轴转速则对切削力影响不是很大。
Cutting force is one of the most important parameters influencing the machining quality and tool life in high-speed cutting. To provide experimental basis for milling parameter optimization and milling force control, the force model for high-speed milling of carbon fiber reinforced polymer (CFRP) is established by central composite response surface methodology. Then the analysis of vari- ance is applied to checking the significances of the milling force model and the regression coefficients. The effect of spindle speed, feed per tooth and cutting depth on milling force is also studied. The re- sults show that the model can predict the cutting force effectively. The depth of cut and feed per tooth have obvious influence on cutting force. The cutting force increases with the increase of feed per tooth or depth of cut. And the influence of spindle speed on cutting force is not great.