位置:成果数据库 > 期刊 > 期刊详情页
Effect of Surface Roughness on the Oxidation Behavior of a Directionally Solidified Ni-Based Superalloy at 1,100℃
  • ISSN号:1006-7191
  • 期刊名称:《金属学报:英文版》
  • 时间:0
  • 分类:TG84[金属学及工艺—公差测量技术] TB332[一般工业技术—材料科学与工程]
  • 作者机构:[1]Superalloys Division,Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China
  • 相关基金:financially supported by the National Natural Science Foundation of China(No.51201164); National High Technology Research and Development Program of China(No.2012AA03A511)
中文摘要:

The effect of surface roughness on the oxidation behavior of a directionally solidified Ni-based superalloy was investigated by surface mapping microscope,scanning electron microscope and X-ray diffraction.It was found that specimens with surface roughness of 0.05 urn exhibit the best oxidation resistance,while specimens with surface roughness of 0.14 μm behave worse than specimens with surface roughness of 0.83 μm.The specimens with surface roughness of 0.05 μm have the best oxidation resistance,which is mainly due to the smallest surface area exposed in air and thinnest work-hardening layer.The Al2O3 layer alleviates the oxidation process of the specimens with surface roughness of 0.83 μm,and this is the possible reason for the better oxidation resistance of samples with surface roughness of 0.83 μm than samples with surface roughness of 0.14 μm.

英文摘要:

The effect of surface roughness on the oxidation behavior of a directionally solidified Ni-based superalloy was investigated by surface mapping microscope,scanning electron microscope and X-ray diffraction.It was found that specimens with surface roughness of 0.05 urn exhibit the best oxidation resistance,while specimens with surface roughness of 0.14 μm behave worse than specimens with surface roughness of 0.83 μm.The specimens with surface roughness of 0.05 μm have the best oxidation resistance,which is mainly due to the smallest surface area exposed in air and thinnest work-hardening layer.The Al_2O_3 layer alleviates the oxidation process of the specimens with surface roughness of 0.83 μm,and this is the possible reason for the better oxidation resistance of samples with surface roughness of 0.83 μm than samples with surface roughness of 0.14 μm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《金属学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国金属学会
  • 主编:
  • 地址:沈阳文华路72号
  • 邮编:110016
  • 邮箱:jsxb@imr.ac.cn
  • 电话:024-23971286
  • 国际标准刊号:ISSN:1006-7191
  • 国内统一刊号:ISSN:21-1361/TG
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:286