位置:成果数据库 > 期刊 > 期刊详情页
Alertness Staging Based on Improved Self-Organizing Map
  • ISSN号:1006-4982
  • 期刊名称:Transactions of Tianjin University
  • 时间:2013.12.12
  • 页码:459-462
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1] 天津大学生物医学工程与科学仪器系 ,天津300072, [2] 邓迪大学矫形及创伤外科学系, 英国300000
  • 相关基金:Foundation items:Supported by National Natural Science Foundation of China(81222021,31271062,61172008,81171423,51007063 ), National Key Technology R&D Program of the Ministry of Science and Technology of China(2012BAI34B02)and Program for New Century Excellent Talentsin University of the Ministry of Education of China( NCET-10-0618 ).
  • 相关项目:基于大脑谐振效应的极低频脉冲磁场治疗失眠症的研究
中文摘要:

设计并实现了一套由热释电传感器和编码的菲涅尔透镜组成的生物特征跟踪识别系统.对传感器得到的生物信号采用了2种方法提取特征:一种是时域方法,即通过AR模型提取自回归系数;另一种是频域方法,即通过主成分分析后的傅里叶变换提取频谱信息.最后采用支持向量机的方法分别验证了2种特征的识别性能.16名受试者在3种行走速度实验环境下的初步结果显示,时域特征的正确识别率为66.48%,而频域特征的识别率则达到了86.5%.上述结果表明了热释电信息用于人体身份识别的潜能,并证明了个体差异与步态频率信息的强相关性.

英文摘要:

A biometric tracking and recognition system was designed and implemented, which consists of a pyroelectric infrared (PIR) detector and a coded Fresnel lens array. Two feature extraction methods were developed to extract the features of the biometric data gathered from the sensor for recognition. One is the time-domain feature extraction method, which uses AR model to extract the auto-regressive (AR) coefficients. Another is the frequency-domain feature extraction method, which uses the Fourier Transform with dimensionality reduction by principal component analysis (PCA) to obtain the spectrum matrix information. A support vector machine (SVM) was used to verify the recognition performances of these two feature extraction methods. Preliminary recognition results for 16 subjects with three different walking speeds show that the probability of correct recognition reaches 66.48% for time-domain feature method and 86.5% for frequency-domain feature method. The above results indicate the potential of pyroelectric infrared signals for human identity recognition, and prove the correlation between individual difference factors and gait frequency information.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《天津大学学报:英文版》
  • 主管单位:中华人民共和国教育部
  • 主办单位:天津大学
  • 主编:龚克
  • 地址:天津市南开区卫津路92号天津大学第19教学桉东配楼
  • 邮编:300072
  • 邮箱:trans@tju.edu.cn
  • 电话:022-27400281
  • 国际标准刊号:ISSN:1006-4982
  • 国内统一刊号:ISSN:12-1248/T
  • 邮发代号:6-128
  • 获奖情况:
  • 天津市一级期刊,被国内外十余家检索机构收录
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国英国皇家化学学会文摘
  • 被引量:153