为评估单自由度(SDOF)模型在结构抗爆设计中的适用性,分别采用SDOF模型和通用有限元软件ANSYS/LS-DYNA对简支钢柱承受爆炸荷载时的动力响应进行模拟;对比二者计算结果,并以有限元模拟为准,分析SDOF模型的适用范围。研究表明:可按照自由振动阶段SDOF模型位移结果的振幅大小,将其位移响应划分为有限变形阶段、临界阶段、失稳破坏阶段,有限变形阶段SDOF模型与有限元结果基本一致;截面高宽比、翼缘宽厚比对钢柱动力破坏形式有重要影响,高宽比越大、翼缘的宽厚比越小,越容易发生平面外弯扭失稳;在SDOF模型中通过假定塑性铰分布长度计算塑性阶段应变及应变率,采用随时间变化的应变率计算Cowper-Symonds本构关系中的应力放大系数是可行的。
For the evaluation of the applicability of the single degree of freedom (SDOF) model in the structural antiknock design, the dynamic response of the simply supported steel column under explosion load was simulated using both the SDOF model and the ANSYS/LS-DYNA in this paper. By the comparison of the two calculation results, the scope of application of the SDOF model was analyzed according to the finite element simulation. The results show that the displacements calculated using the SDOF model can be divided into three different phases including the finite deformation, in which the SDOF model agrees well with the DYNA simulation, the critical deformation, and the buckling failure deformation, according to the amplitude size in the free vibration. The ratio of the cross section's depth to its width and that of the flange's width to its thickness have significant effect on the dynamic failure forms of the steel column, namely the bigger the ratio of the depth to the width and the smaller the ratio of the width to the thickness, the more prone it is for the buckling to suffer outof-plane bending and twisting. In the SDOF model, it is feasible to calculate the strain and the strain rate in the plastic deformation phase by assuming the plastic hinge distribution length and the stressmagnified coefficient in the Cowper-Symonds constitutive relation by using the time-dependent strain rate.