位置:成果数据库 > 期刊 > 期刊详情页
基于新的成员选择方法的聚类融合算法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西安交通大学电子与信息工程学院,陕西西安710049, [2]洋浦经济开发区经济发展局,海南海口578001
  • 相关基金:国家自然科学基金项目(61540008);陕西省自然科学基础研究计划项目(2014JQ2-6038)
中文摘要:

聚类融合是聚类分析领域的一个研究热点,它将针对同一问题产生的多个聚类成员(即聚类结果)融合成一个结果,以提高聚类算法的鲁棒性和准确性.在聚类融合过程中,聚类成员的“质量”非常重要,一些“质量”比较差的聚类成员会直接影响聚类融合的结果.在深入研究聚类融合算法基础上,提出新的加权JP(Jaccard index-Precision)聚类成员选择方法和基于该方法的聚类融合算法.在多个不同数据集上的实验结果表明,利用这种新的聚类成员选择方法可以有效地改善聚类融合算法结果的准确性和鲁棒性,性能显著提高.

英文摘要:

Clustering ensemble is one attractive field of cluster analysis. Focus on improving the robustness and precision of clustering algorithms, clustering ensemble methods combine multiple clustering members (clustering results) of the same issue into one result. During the process of clustering ensemble, the quality of clustering members is very important, some poor clustering members will directly affect the results of clustering ensemble. In this paper, clustering ensemble algorithms are studied, clustering ensemble algorithms based on new clustering members selection method using weighted JP(Jaccard index-Precision) are proposed. Experimental results show that precision and robustness of clustering are both improved on different datasets. The clustering performance is improved significantly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909