本文采用分子动力学模拟研究了界面间接枝羟基对碳纳米管在石墨基底上运动和摩擦行为的影响.结果表明:界面接枝羟基后碳纳米管所受的侧向力明显改变;仅石墨接枝羟基时碳纳米管侧向力波动增大;同时由于垂直碳纳米管与基底间接触面积小,碳纳米管所受的摩擦力随羟基含量的增加而增大;碳纳米管与石墨上均接枝羟基后体系中引入了氢键和库仑力作用,显著增加了界面间的摩擦,体系的滑移界面从碳纳米管与石墨间迅速转变为石墨层间,并且导致碳纳米管在垂直初始运动方向上也出现了滑移.
Understanding how the groups at interface influence the friction of carbon nanotubes can provide reference for their applications. In this paper, we investigate the influences of hydroxyls on motion and friction of carbon nanotube on graphite substrate by molecular dynamics simulation. The simulation cases include the ideal vertical carbon nanotube on the ideal graphite substrate, the ideal vertical carbon nanotube on the graphite with hydroxyls on the top layer, the carbon nanotube and the graphite both with hydroxyls on the surface. The results show that the lateral force of carbon nanotube changes when hydroxyls are introduced into the interfaces. If hydroxyls are only on the graphite, the fluctuation of lateral force increases obviously. The reason can be attributed to the increase of atomic surface roughness. Moreover, due to the small contact area between vertical aligned carbon nanotube and substrate, the mean friction becomes raised with hydroxyl content increasing, which is different from the conclusion obtained from silicon tip sliding on graphene with hydrogen on the surface. In that case, owing to the large contact area, the mean friction of tip reaches a maximum value at hydrogen content in a range between 5 and 10% because of the competition between the increase in the number of hydrogen atoms and the weakening of the interlock due to the increase in separation of tip from substrate. Hydrogen bond and Coulomb force appear between interfaces when hydroxyls are both on carbon nanotube and on graphite, which significantly increases friction force on carbon nanotube. And slip interfaces translate rapidly from between carbon nanotube and graphite into between graphite layers. Like the case with hydroxyls only on the graphite, the sliding of carbon nanotube perpendicular to the initial velocity also occurs when carbon nanotube and graphite are both with hydroxyls. This phenomena can be explained as the fact that the introduction of hydroxyls breaks the equilibrium of the force on the carbon nanotube in th