目的:比较Elman神经网络模型与自回归移动平均( ARIMA)模型对流感发病率预测的效果。方法:选取河南省2006年1月至2010年12月的流感疫情资料作为训练集,2011年1月至12月的流感疫情资料作为检验集,前者用于Elman神经网络模型和最优ARIMA模型的建立,后者用于两种模型的预测效能的检验与评价。结果:在最优ARIMA(1,0,0)模型和最优Elman神经网络预测模型下,检验集预测值的平均误差绝对值、平均误差绝对率和非线性相关系数分别为0.133、0.238、0.708和0.152、0.271、0.725。结论:Elman神经网络模型具有与ARIMA模型相近的预测效能,在流感发病率预测中有较好的应用价值。
Aim:To compare the efficiency of Elman neural network model and autoregressive integrated moving aver -age( ARIMA) model to predict the incidence of influenza .Methods:Elman neural network model and ARIMA model were established using the epidemic data of influenza in Henan Province from January 1, 2006 to December 31, 2010, and the predictive performance was measured and accessed using the data from January 1 to December 31, 2011.Results:The op-timal ARIMA model was ARIMA(1,0,0)model, the optimal Elman neural network model was 4-12-1-1.The mean abso-lute error ( MAE) , mean error rate ( MER) and nonlinear correlation coefficient ( RNL) of prediction results of the test set using the optimal ARIMA model and Elman neural network model were 0.133, 0.238, 0.708 and 0.152, 0.271, 0.725, respectively.Conclusion:The predictive efficiency of models based on time series and Elman neural network model is e -quivalent ,and they perform well in predicting the incidence of influenza .