Isolated ruminal epithelia from caudal blind sacs of dairy goats were incubated with butyrate and insulin-like growth factor-1(IGF-1) at different concentrations. Proportions of ruminal epithelium in different phases of the cell division cycle were determined by flow cytometric analysis. The proportion of epithelial cells in S phase and G2-M phase(PS&G2-M) increased significantly(P<0.01) whereas the proportion of epithelial cells in G0-G1 phase(PG0-G1) decreased after incubation with IGF-1. PS&G2-M decreased whereas PG0-G1 increased markedly(P<0.01) after incubation with sodium butyrate. PS&G2-M incubated with IGF-1 and butyrate sodium together increased more than that incubated with IGF-1 alone; PG0-G1, however, decreased significantly(P<0.01). Our results indicate that IGF-1 enhances whereas sodium butyrate inhibits the proliferation of rumen epithelial cells. Furthermore, butyrate and IGF-1, together, have a synergic effect on the proliferation of rumen epithelium.
Isolated ruminal epithelia from caudal blind sacs of dairy goats were incubated with butyrate and insulin-like growth factor-1(IGF-1) at different concentrations. Proportions of ruminal epithelium in different phases of the cell division cycle were determined by flow cytometric analysis. The proportion of epithelial cells in S phase and G2-M phase(PS&G2-M) increased significantly(P〈0.01) whereas the proportion of epithelial cells in G0-G1 phase(PG0-G1) decreased after incubation with IGF-1. PS&G2-M decreased whereas PG0-G1 increased markedly(P〈0.01) after incubation with sodium butyrate. PS&G2-M incubated with IGF-1 and butyrate sodium together increased more than that incubated with IGF-1 alone; PG0-G1, however, decreased significantly(P〈0.01). Our results indicate that IGF-1 enhances whereas sodium butyrate inhibits the proliferation of rumen epithelial cells. Furthermore, butyrate and IGF-1, together, have a synergic effect on the proliferation of rumen epithelium.