在这份报纸,我们为解决静止海军司烧方程的溪流功能明确的表达建议一个二格子的算法。算法被在粗糙的网孔空格和二个类似的线性系统把原来的系统归结为一个小、非线性的系统构造(与一样的僵硬矩阵但是不同右边) 在好网孔空格。算法的集中分析和错误评价为遵守元素的盒子被给。而且,算法与最佳的 asymptotic H 2 错误生产一个数字答案。最后,我们给一幅数字插图为解决海军司烧方程表明二格子的算法的有效性。
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.