位置:成果数据库 > 期刊 > 期刊详情页
一种新的目标检测方法:Latent Dirichlet classification
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京大学计算机软件新技术国家重点实验室,南京大学计算机科学与技术系,南京210093
  • 相关基金:国家自然科学基金(60875011),江苏省自然科学基金重点项目(BK2010054)
中文摘要:

图像目标检测的任务是通过对图像分块或者分区域提取特征,进行学习和分类,从而检测出目标在图像中的位置.基于潜在迪利克雷分布模型,提出一种应用于目标检测的主题模型latent Dirichlet classification(LDC),结合图像连续值局部特征和共生关系来进行目标检测.LDC模型将latent Dirichlet allocation(LDA)生成的主题信息作为权重赋予样本,生成多份样本,然后利用多份样本训练多个分类器进行集成分类.实验结果表明利用LDC模型能有效提高检测精度.

英文摘要:

Object detection and recognition is a hot topic in computer vision. Traditional methods use only local features for detection. Recently, some research results show that the detecting performance could be improving by using topic features. Some researchers employed topic models which is originally used for text analysis to extract topic features from images for object recognition and detection. However, visual features should be quantized into virtual words and information of class label should be ignored while using traditional topic models such as probabilistic latent sematic analysis (PLSA), latent Dirichlet allocation (LDA) and so on. In order to utilize continuous local features and information of class label in one model, we propose a new graphical model named latent Dirichlet classification(LDC), which is inspired by LDA model. The proposed model has three more variables than LDA in the graphical structure: x(loeal features), c(class label) and v(parameter). In the proposed model, we consider class label of each image block is determined by both of its local features and topic features based on original LDA model. Parameter v is a set of elassifiers trained for combining these two features. Similar with the inference process of LDA model, we use variational inference to solve our model. As a result of continuous local features, information of class label and topic features are all token into consideration reasonably, LDC ean be used in object detection directly and efficiently. In the end of this paper, we test the availability of LDC on two datasets. Experimental results show that our proposed model improve the performance of object detection efficiently.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316