一个反平均k集包含k个互不相同的整数,最小整数为零,且没有3项满足等差级数.反平均问题是对k≥3,确定反平均数λ~*(k)=min{max S|S是反平均k集}.反平均集的一些性质得到研究,给出反平均数λ~*(k)的性质和界,以及可算法化的反平均集构造方法.
For each integer k ≥ 3, an anti-average k-set is a set with k nonnegative integers that contains zero and has no three terms in arithmetic progression. We wish to find λ*(k) = rain{max S : S is an anti-average k-set} for every integer k≥ 3. Some properties and bounds of λ* (k) are shown, and the method of constructing larger anti-average sets are provided.