位置:成果数据库 > 期刊 > 期刊详情页
泊松噪声模糊图像的边缘保持变分复原算法
  • 期刊名称:光电子?激光, Vol.18, No.3, 2007: 359-363(EI Compendex:
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]国防科技大学理学院,湖南长沙410073, [2]桂林空军学院,广西桂林541003
  • 相关基金:国家自然科学基金资助项目(60572136).
  • 相关项目:SAR图像数据的超完备稀疏表示及应用
中文摘要:

从贝叶斯估计出发,构造了一种新的变分模型,用于复原被泊松噪声污染的模糊图像。首先讨论了模型正则化项中具有边缘保持能力的函数选取以及模型求解的相关问题,然后将变分模型的求解转化为可快速求解的非线性扩散方程,给出了正则化参数选取的初步空间自适应方法,可以区分平滑区域和图像边缘自适应的调节参数。实验结果表明,本文方法的复原效果整体上优于传统的迭代正则化方法,复原图像的边缘得到了有效的保护,泊松噪声的抑制效果明显,复原图像提高的改进信噪比(ISNR)要比迭代正则化方法平均提高1dB以上。

英文摘要:

The restoration of blurred image with Poisson noise was studied. According to the statistical maximum a posteriori MAP estimation of the original image,we built a new criterion to measure the fidelity of the estimated image to the original image corrupted by Poisson noise, Because of the ill-posed nature of the image restoration problem,we construct a new variational model with a regularization term. The choice of the edge-preserving regularization function.is addressed. To solve the variational model,we transform it to be a nonlinear diffusion equation. An adaptive regularization parameter, which can change its value from a smooth area to an edge area, is proposed. Numerical experiments demonstrate that the proposed method results in high restoration performance. The new model can preserve edges and reduce the Poisson noise effectively. The improved signal to noise ratio(ISNR) is the new model is about 1 dB higher than the traditional iterative regularization method.

同期刊论文项目
期刊论文 54 会议论文 2 著作 1
同项目期刊论文