研究泛逻辑的泛与运算模型、泛或运算模型与模糊非之间的关系。证明了零级泛与运算模型T(x,y,h)、零级泛或运算模型S(x,y,h)与强非N(x)=1—x形成De Morgan三元组,当h∈(0,0.75),零级泛或运算S(x,y,h)=(min(x^m+y^m,1))^1/m,N(x)=(1-x^m)^1/m时,T,S,N形成一个强De Morgan三元组。进一步证明了一级泛与运算模型T(x,y,h,k)、一级泛或运算模型S(x,y,h,k)与N(x)=(1-x^n)^1/n满足De Morgan定律;特别当h∈(0,0.75),一级泛或运算模型S(x,y,h,k)=(min(x^nm+y^nm,1))^1/nm,N(x)=(1-x^nm)^1/nm时,T,S,N形成一个强De Morgan三元组。
This paper studies the relationship of the universal conjunction model, the universal disjunction model and fuzzy negation. It proves that the 0-level universal conjunction model T(x, y, h), the 0-level universal disjunction model S (x,y, h) and strong negation N(x) = 1 -x form a De Morgan triple. The 0-level universal conjunction model, the 0-level universal disjunction model S (x, y, h) = ( rain ( x^m + y^m, 1 ) )^1/m and N (x) = ( 1 - x^m ) ^1/m is a strong De Morgan triple for h ∈ ( 0, 0. 75). Moreover,it shows that the l-level universal conjunction ,node1 T(x, y, h, k), the 1-level universal disjunction model S(x, y, h, k) and strong negation N(x) = (1 -x^n)^1/n satisfy De Morgan triple. In particular, the l-level universal conjunction model, the l-level universal disjunction model S (x, y, h, k) = (min(x^nm + y^nm, 1 ))^1/nm and N(x) = (1 -x^nm) ^1/nm is a strong De Morgan triple for h ∈ (0, 0.75 ).