位置:成果数据库 > 期刊 > 期刊详情页
基于良序子集的最近邻垄行图像识别算法
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南农业大学南方农业机械与装备关键技术省部共建教育部重点实验室,广州510642
  • 相关基金:国家自然科学基金项目(60574029)
中文摘要:

根据田间作物垄点像素矩阵特点,基于行向量目标像素良序子集,先进行垄点子集预处理,然后运用最近邻判别准则搜寻每个节点像素的最近邻点。通过设置最近邻搜索方向角和最近邻阈值,对断垄和较大面积的杂草等噪声影响进行控制。实验结果表明,与传统的最近邻算法比较,该算法的准确性和鲁棒性均得到提高,时间复杂度较小,对农田视觉导航实际应用有一定价值。

英文摘要:

The conventional nearest neighbor(CNN) classifiers provide a simple approach with good robustness, which is guaranteed to converge to a result, but it has some shortcomings such as aimless searching, much time consumption, and an unexpected infection by noises and so on. In this paper, a new approach to detect crop rows was proposed, which was based on the well-ordered subsets of the objective in row vectors of image matrix. And the nearest neighbor search angle and the nearest neighbor distance which are considered important control factors were embedded in the CNN. Combined with the inherent property of crop pixels, the nearest neighbor query can be limited in a small suitable range. The experimental results indicate the algorithm was of good robustness and accuracy compared with the CNN, and it could avoid the impact of weeds with small time consumption.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0