为了研究多体量子系统中量子态的可分性,利用Bell不等式给出了多体量子可分态的所有分类.这些不等式能分类2 2 2 2 2量子系统中所有可能的k-可分量子态,包括全可分、双可分、三可分、四可分.利用推广的Bell算子和真纠缠分类,运用Cauchy-Schwarz不等式、线性规划等方法,给出了Bell算子平均值的绝对值上界,实现了多体可分态的分类.
To study the separability of quantum states in multipartite quantum systems, the classification of multipartite quantum separable states was presented by using Bell inequalities. These inequalities can well distinguish all possible k-separable states in 2 2 2 2 2 systems, including fully separable, biseparable, tri-separable and four-separable states. Using the generalized Bell operator and the classification of genuine entanglement, applying the Cauchy-Schwarz inequality, the linear programming and other methods in mathematics, the authors give out the upper bound of absolute value for the average values of Bell operator to achieve the classification of separable states in muhipartite quantum systems.