本文研究了矩阵空间到自身的满数值半径等距问题.利用等距嵌入方法,获得了自共轭矩阵空间单位球面到自身的满数值半径等距可实线性延拓至全空间上的满数值半径等距,为Tingley等距延拓问题提供了一种方法.
In this article, we study the numerical radius isometry on matrix spaces. Byusing isometric embedding, we obtain surjective numerical radius isometry from the unit sphereof self-adjoint matrix space onto itself can be real-linear extended to the whole space, and give amethod of Tingley isometric extension problem.