位置:成果数据库 > 期刊 > 期刊详情页
组织进化粒子群数值优化算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学智能信息处理研究所,西安710071
  • 相关基金:国家自然科学基金项目(No.60133010,No.60372045)、国家863计划项目(No.2002AA135080)和国家973计划项目(No.2001CB309403)资助
中文摘要:

为充分利用粒子的通讯、响应、协作和自学习能力等特性,克服算法早熟收敛,本文提出一种组织进化粒子群算法.该算法将进化操作直接作用在组织上,通过组织间的相互竞争、协作,最终达到全局优化的目的,且证明算法的全局收敛性.实验中,用12个无约束标准测试函数对算法性能进行测试,与其它算法进行比较,并对算法中的参数进行分析.结果表明,本文算法无论在解的质量上还是在计算复杂度上都明显优于其它算法.参数分析表明该算法具有性能稳定、成功率高、对参数不敏感等优良特性.

英文摘要:

An organizational evolutionary particle swarm optimization (OEPSO) is presented. The evolutional operations are acted on organizations directly in the algorithm. The global convergence is gained through competition and cooperation among the organizations, and the mathematic convergence is given. In the experiments, OEPSO is tested on 12 unconstrained benchmark problems, and compared with FEP and three algorithms based on the PSO . In addition , the effects of parameters in the algorithm are analyzed. The results indicate that OEPSO performs better than other algorithms both in solution quality and computational complexity. The analyses of parameters show OEPSO has stable performance and high success ratio, and it is insensitive to parameters.

同期刊论文项目
期刊论文 104 会议论文 52 著作 5
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169