位置:成果数据库 > 期刊 > 期刊详情页
微粒群算法优化化工建模训练集
  • ISSN号:0438-1157
  • 期刊名称:《化工学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TE6[石油与天然气工程—油气加工工程]
  • 作者机构:[1]西华师范大学应用化学研究所,四川南充637002
  • 相关基金:四川省企业信息化项目计划(2005-199-16).
中文摘要:

提出两种均以微粒群(PSO)算法对原始训练集随机抽样优化,再结合机器学习算法建立预测模型的PSO算法优化化工建模训练集的思路。思路1首先以模型交叉验证的均方误差函数mse最小为目标优化训练集,再通过对验证集预测,从平行运行得到的多个优化训练集中确定最优训练集用于建模。思路2借鉴提高BP神经网络泛化能力的初期终止(early stop)法,以对验证集预测的mse最小为目标优化训练集,再通过对测试集预测,从平行运行得到的多个优化训练集中确定最优训练集用于建模。通过仿真实验研究和对某炼油厂调和汽油生产数据的具体分析应用,表明本文思路可以较大幅度提高模型的预测准确性,在化工建模中具有推广应用价值。

英文摘要:

Two methods were proposed to optimize the training set of chemical engineering modeling based on particle swarm optimization (PSO) with random sampling. The forecasting model was formed by integrating PSO and other machine learning arithmetic which was used to model. In method 1 the optimized training set was acquired firstly by optimizing the training set which set the goal of minimizing the mean of squared errors (mse) in cross validation, secondly by making the prediction to the validation set, and lastly by choosing the one that gave the best prediction results among the optimized training sets. In method 2 the thought of early stop in BP neural network was adopted. The optimized training set was acquired firstly by optimizing the training set which set the goal of minimizing the mse to the validation set, secondly by making the prediction to the testing set, and lastly by choosing the one that gave the best prediction results among the optimized training sets. These two methods were used to deal with the simulation data and the gasoline blending data collected from a refinery. The results showed that the methods could improve the accuracy of prediction greatly. These two methods are worth generalizing in chemical engineering modeling in the future.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185